首页 | 供应信息 | 求购信息  | 下载系统 | 技术资讯 | 企业信息 | 产品信息 | 论文信息 | 展会信息 | 在线工具
作者: 发布时间:2015-07-17 来源: 繁体版
EMI的发生虽然没能捕捉到实际的上升时间,我在217MHz频率做了评估提醒铃声。正如你稍后将看到的,当我们开始在频域寻找时,该谐振在带宽中产生EMI,并导致一个峰值。无论是信号接脚和接地回路连接到R&S RT-ZS20探头,路径都非

EMI的发生

虽然没能捕捉到实际的上升时间,我在217MHz频率做了评估提醒铃声。正如你稍后将看到的,当我们开始在频域寻找时,该谐振在带宽中产生EMI,并导致一个峰值。无论是信号接脚和接地回路连接到R&S RT-ZS20探头,路径都非常短,所以提醒铃声并不是由探针造成,而是电路的寄生共振。

接下来,我量测在电源输入电缆传导的EMI,且透过负载电阻显示EMI传导特征(图5)。

图5 用Fischer F-33-1电流探头进行高频电流的测试。
图5 用Fischer F-33-1电流探头进行高频电流的测试。
rSz自动化在线网

图6显示,整个9k~30MHz的传导发射频段有非常高的1MHz谐波,且都发生在大约9MHz的间隔谐波上,且有些我还不确定其原生处。这些谐波在负载电阻电路上特别高,我怀疑若没有良好质量的线性滤波器,这EMI的数值可能会使传导辐射符合性的测试失败。

图6 用Fischer F-33-1电流探头测量的电源输入缆线中的高频电流(紫线),以及10奥姆负载电阻(蓝线)。黄线是环境噪声位准,在约9 MHz的谐波顶部发生1 MHz的开关尖峰突出。从我的经验来看,蓝色线的位准令人担忧,且可能造成传导辐射测试的失败。
图6 用Fischer F-33-1电流探头测量的电源输入缆线中的高频电流(紫线),以及10奥姆负载电阻(蓝线)。黄线是环境噪声位准,在约9 MHz的谐波顶部发生1 MHz的开关尖峰突出。从我的经验来看,蓝色线的位准令人担忧,且可能造成传导辐射测试的失败。
rSz自动化在线网

然后将带宽从9KHz拓展到1GHz以便观察谐波可以到多远,然而才约600兆赫就开始渐行渐远。请参看图7。

图7 用Fischer F-33-1电流探头测量的电源输入缆线中的传导辐射(紫线),以及10奥姆负载电阻(蓝线),黄线是环境噪声测量。辐射所有的出现都在600MHz,须注意共鸣约在220MHz。
图7 用Fischer F-33-1电流探头测量的电源输入缆线中的传导辐射(紫线),以及10奥姆负载电阻(蓝线),黄线是环境噪声测量。辐射所有的出现都在600MHz,须注意共鸣约在220MHz。
rSz自动化在线网

最后,我用R&S RS H 400-1 H场(H-field)探针(图8)来量测GaN组件附近的近场和通过负载电阻器的高频电流(图9)。

图8使用R&S RS h400-1 H场探针测量接近GaN开关装置近场辐射。
图8使用R&S RS h400-1 H场探针测量接近GaN开关装置近场辐射。
rSz自动化在线网

图9 H场探针测试结果。黄线是环境噪声位准,紫线是GaN组件附近的测量,蓝线则是在10奥姆的负载电阻,辐射终于在约800MHz处逐渐减少。
图9 H场探针测试结果。黄线是环境噪声位准,紫线是GaN组件附近的测量,蓝线则是在10奥姆的负载电阻,辐射终于在约800MHz处逐渐减少。
rSz自动化在线网

注意(除了所有宽带噪声位准,峰值出现在约220 MHz)振铃频率(标示1),以及在460MHz(标示2)的谐振。从过往的经验,我喜欢把谐波位准降到40dBuV显示行(Display Line),也就是上面几张屏幕截图中的绿线。两个共振都相当接近,并因而导致“红旗”。

GaN组件价值显著

GaN功率开关的价值很明显,效率也比MOSFET来得好。虽然GaN技术已问世,但我只看到少部分数据谈论这些皮秒开关装置如何影响产品EMI的发生。底下我列出了一些参考,以及在使用GaN组件时,会“扫大家兴”的部分,但我相信有更多研究需要去完成EMI会发生的后果,至于EMI工程师与顾问在未来几年也将可望采用GaN组件。

Efficient Power Conversion, Inc. (web site, GaN parts, and demo boards)

Carlson and Hokenson, GaN Gives Power and Flexibility to L-Band Radar.

EE Times, The 13-Step EMI Mitigation Program for Switching Power Supplies, 12/2013.

McDonough, et al., Reduction of EMI Effects in Motor Drives and Complex Power Electronic Systems, University of Texas.

Mende and Stauffer, Take on GaN measurement challenges, EDN, 12/2012.

Muttaqi and Haque, Electromagnetic Interference Generated from Fast Switching Power Electronic Devices, University of Wollongong.

Sandler, How to measure the world’s fastest power switch, EDN.如何测量全球最快的功率开关

Sandler, Power Integrity - Measuring, Optimizing, and Troubleshooting Power Related Parameters in Electronic Systems, McGraw-Hill, 2014.

TI, Layout Considerations for LMG5200 GaN Power Stage, 3/2015.


1月出席DesignCon 2015时,我有机会听到一个由Efficient Power Conversion 公司CEO Alex Lidow主讲的有趣专题演讲,谈到以氮化镓(GaN)技术进行高功率开关组件(Switching Device)的研发。我也有幸遇到“电源完整性 --在电子系统测量、优化和故障排除电源相关参数(Power Integrity - Measuring, Optimizing, and Troubleshooting Power Related Parameters in Electronic Systems)”一书的作者Steve Sandler,他提出与测量这些设备的皮秒边沿(Picosecond Edge)速度相关联(可参看他文章索引的部分)。

由于这些新电源开关的快速开关速度与相关更高效率,因此我们希望看到他们能适用于开关模式电源和射频(RF)功率放大器。他们可广泛取代现有的金属氧化物半导体场效晶体管(MOSFET),且具有较低的“On”电阻、更小的寄生电容、更小的尺寸与更快的速度。我已注意到采用这些装置的新产品,其他应用包括电信直流对直流(DC-DC)、无线电源(Wireless Power)、激光雷达(LiDAR)和D型音频(Class D Audio)。很显然,任何半导体组件在几皮秒内切换,很可能会产生大量的


使用GaN组件时,EMI的发生
评论】【加入收藏夹】【 】【关闭
※ 相关信息
无相关信息
※ 其他信息
访问数: | 共有条评论
发表评论
用户名:
密码:
验证码: 看不清楚,点击刷新
匿名发表

 搜索新闻
[提交投稿]  [管理投稿]
 最新新闻
 热点新闻
数据加载中..

网站地图
Autooo.Net 版权所有
Copyright © 2007--2015 All rights reserved