首页 | 供应信息 | 求购信息  | 下载系统 | 技术资讯 | 企业信息 | 产品信息 | 论文信息 | 展会信息 | 在线工具
作者: 发布时间:2015-05-14 来源: 繁体版
当前VLSI 技术不断向深亚微米及纳米级发展,模拟开关是模拟电路中的一个十分重要的原件,由于其较低的导通电阻,极佳的开关特性以及微小封装的特性,受到人们的广泛关注。模拟开关导通电阻的大小直接影响开关的性能,低导通
当前VLSI 技术不断向深亚微米及纳米级发展,模拟开关是模拟电路中的一个十分重要的原件,由于其较低的导通电阻,极佳的开关特性以及微小封装的特性,受到人们的广泛关注。模拟开关导通电阻的大小直接影响开关的性能,低导通电阻不仅可以降低信号损耗而且可以提高开关速度。要减小开关导通电阻,可以通过采用大宽长比的器件和提高栅源电压的方法,可是调节器件的物理尺寸不可避免地会带来一些不必要的寄生效应,比如增大器件的宽度会增加器件面积进而增加栅电容,脉冲控制信号会通过电容耦合到模拟开关的输入和输出,在每个开关周期其充放电过程中会消耗更多的电流,时间常数t=RC, 充放电时间取决于负载电阻和电容,使得开关的速度变慢,同时增大宽长比也增加了器件的成本。当前减小导通电阻的普遍办法是提高开关管的栅电压。

1 传统模拟开关原理及栅增压原理

图1 传统模拟开关
图1 传统模拟开关
vYN自动化在线网

在MOS 技术中,传统的开关实现就是一个PMOS 管和一个NMOS 管并联,如图1 所示,A 和B 两端分别为传送信号的输入、输出端,两个管子的栅极分别由极性相反的信号来控制。由于MOS管的源极和漏极可以互换,因此这个电路的输入、输出端也可以互换,它可以控制信息双向流通,就像一个双向开关。工作过程:当控制信号S=1 时,PMOS 管和NMOS管均导通,传输门接通,信号畅行无阻;当控制信号S=0 时,PMOS 管和NMOS 管均截止,传输门关闭,开关断开。当一管的导通电阻减小,则另一管的导通电阻就增加。由于两管是并联运行,可近似地认为开关的导通电阻近似为一常数。这是CMOS 传输门的优点。

1.1 模拟开关分析

CMOS 开关的导通电阻为:

模拟开关分析vYN自动化在线网

展开为:

模拟开关分析vYN自动化在线网

其中un 和up 表示NMOS 管和PMOS 管迁移率;Cox 表示器件的栅氧化层电容;Vg 表示NMOS 管栅电压,Vthn|Vthp|分别表

示NMOS 管和PMOS 管的阈值电压,如果设计时取

模拟开关分析vYN自动化在线网

时,式(2)可化简为:

模拟开关分析vYN自动化在线网

导通电阻将不随输入信号改变而改变,可等效为一个恒定阻值的电阻,如式(3),不会引起模拟信号的失真,由于导通电阻是由两个电阻并联,所以阻值较单管开关小得多,使得开关速率又得到提高。从式(3)中可以知道MOS 开关为了能提高速度和精度,需要抬高NMOS 管的栅电压。增加栅电压最直接的办法就是提高电路的电源低压,但是从低电压系统角度来说这增加了成本,因此需要加一个电源电路,最好的办法是芯片内部产生一个电压来增加栅电压。

1.2 栅增压原理

栅增压原理是依靠电荷泵的工作原理:先贮存能量,然后以受控方式释放能量,以获得所需的输出电压。本文中所用的电容式电荷泵采用电容器来贮存能量,通过电容对电荷的积累,电容A 端接时钟信号Clk,当A 点电位为0 时,B 点电位为Vdd;当A点电位为Vdd 时,由于电容两端的电压不会突变,理想情况下,此时B 点电位被抬升为2Vdd,因为电荷泵的有效开环输出电阻存在,使得实际情况B 点电位低于2Vdd。

图2 栅增压基本电路
图2 栅增压基本电路
vYN自动化在线网

下一页:改进型模拟开关电路设计


2 改进型模拟开关电路设计

2.1 电路描述和分析

图4 为本文设计的栅增压电路,M3 和M4 组成了一对传输门,可以保证输入信号在高低电压无损失地传输到传输门的另一端。M1 的栅极接反相器的输出端,漏源两端分别接电容正极板和电源电压,M1 的作用是当开关连通且时钟信号为高电平时,保证电容电压抬升后不会迅速放电使电容正极板电位为0。M2 的栅极接时钟信号CLK,漏源两端分别接电容正极板和电源电压,它的作用是当开关关闭时,M2 导通时使电容正极板电位保持在电源电压。下面分析该电路的工作情况:

当开关关闭时,S 为低电平,M1 导通,保证电容正极板上的电压最低为VDD,此时M3 和M4 都不导通,信号不能达到输出端。当开关导通时,S 为高电平,M1 截止,时钟为低电平时,M2 和M5 导通,M1 和M6 关闭,电容充电至P-Vds;CLK为高时,由于电容两边电压不会突变,电容正极板上的电压会被抬升至原来的两倍。

从上面分析可知,所有跟开关栅端电压连通的电压都是和输入信号无关的,因此开关导通电阻与输入信号无关,可以大大抑制信号有关的电压损失,保证了信号的线性度和器件的可靠性。

图3 栅增压仿真结果
图3 栅增压仿真结果
vYN自动化在线网

图4 改进型栅增压电路
图4 改进型栅增压电路


基于电荷泵改进型CMOS模拟开关电路
评论】【加入收藏夹】【 】【关闭
※ 相关信息
无相关信息
※ 其他信息
访问数: | 共有条评论
发表评论
用户名:
密码:
验证码: 看不清楚,点击刷新
匿名发表


网站地图
Autooo.Net 版权所有
Copyright © 2007--2015 All rights reserved